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OPINION ARTICLE

A call for applying trophic structure in ecological
restoration

Lauchlan H. Fraser'2, William L. Harrower?, Heath W. Garris!, Scott Davidson®, Paul D. N.
Hebert>, Rick Howie®, Anne Moody’, David Polster®, Oswald J. Schmitz’, Anthony R. E. Sinclair!?,
Brian M. Starzomski!!, Thomas P. Sullivan!?, Roy Turkington?, Dennis Wilson!?

Ecological restoration projects have traditionally focused on vegetation as both a means (seeding, planting, and substrate
amendments) and ends (success based upon primary productivity and vegetation diversity). This vegetation-centric approach
to ecological restoration stems from an historic emphasis on esthetics and cost but provides a limited measure of total ecosystem
functioning and overlooks alternative ways to achieve current and future restoration targets. We advocate a shift to planning
beyond the plant community and toward the physical and biological components necessary to initiate autogenic recovery, then
guiding this process through the timely introduction of top predators and environmental modifications such as soil amendments

and physical structures for animal nesting and refugia.
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Implication for Practice

e Ecosystem restoration projects are goal-oriented, but these
goals are too often focused on plant productivity and plant
species diversity.

e Functioning food webs are a productive goal for restora-
tion projects, yielding recovery of ecosystem functions in
addition to plant diversity.

e Research is needed to determine how decomposers, herbi-
vores, and predators affect plant diversity and total ecosys-
tem function.

e Understanding site-specific food webs at the onset of
degradation is key to successful restoration.

Introduction

A heightened appreciation for ecological restoration stems
from increasing public awareness of how human impacts
on the environment negatively affect human health (Chi-
vian 2002), economic well-being (Costanza etal. 1997),
biodiversity (WWF 2014) and standards of living (Nisbet
etal. 2008). As a consequence, legislation in many nations
requires the mitigation and restoration of ecosystems dam-
aged by deliberate human activity (Brandon 2013). To that
end, industry-specific regulations have been developed for
a number of industries such as mining, oil and gas, forestry
and transportation (Tordoff et al. 2000; Visseren-Hamakers &
Glasbergen 2007). At the same time, increased global demand
for natural resources, and the inevitable habitat destruction
that accompanies resource extraction calls for more and better
restoration efforts.

Bradshaw (1987) stated that our ability to restore a system
is a litmus test of our core understanding of that system’s ecol-
ogy; if we are unable to restore an ecosystem with certainty, it
is unlikely that we understand it sufficiently. Historically, land
restoration efforts had the primary goal of re-establishing veg-
etation, but this narrow view can limit ecosystem development,
and can result in restoration failure (Fagan et al. 2008; Sim-
mers & Galatowitsch 2010). We argue instead that restoration
efforts should include the goals of developing food web struc-
ture, increasing biodiversity and enhancing ecosystem services.
Restoration practices focused on these outcomes will necessar-
ily lead to an ecosystem-based approach to restoration that is
preferable to a vegetation-centered approach because a commu-
nity with diverse multi-trophic species with high trophic transfer
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efficiency is more resilient and self-sustaining (Dobson et al.
2009; Filotas et al. 2010). We add our voices to the growing
chorus that in light of our understanding about how ecosystems
structure and function, the incorporation of trophic structure in
restoration is essential (Palmer et al. 1997; Vander Zanden et al.
2006; Lake et al. 2007; Dobson et al. 2009; Pillai et al. 2011;
Montoya et al. 2013).

Restoration of animal communities seems to mostly follow
the “Field of Dreams” hypothesis: “if you build it, they will
come” (Palmer et al. 1997, 2010). This laissez-faire approach
to ecosystem restoration applies the outdated notion that ecosys-
tems are controlled only by bottom-up processes where plants
provide the energy and nutrients that support animals in higher
trophic levels. This view ignores the growing scientific under-
standing that feedbacks from animals can cause top-down con-
trol that determines the abundance and diversity of plants as
well the rate at which nutrients are cycled through ecosystems
(Bardgett & Wardle 2010; Schmitz et al. 2010). There is also a
large body of work on the relationship between the non-random
structure of species interactions, within and between trophic lev-
els, and community stability (May 1972; Pimm 1984; McCann
2000; Thébault & Fontaine 2010; Allesina & Tang 2012; Mougi
& Kondoh 2012; Loreau & de Mazancourt 2013; Sauve et al.
2014). Hence, if the ultimate goal of restoration is recov-
ery of self-sustainable, stable, and resilient communities, the
re-establishment of top-down and bottom-up controls, and eco-
logical networks must be planned. We argue that this approach
requires more explicit emphasis on targeting the species com-
positions of food webs comprising ecosystems and their inter-
actions.

Application of Food Web Theory to Restoration

Food web theory is an essential tool for restoration ecology
because of its intersection with population, community, and
ecosystem ecology. Current food web theory incorporates both
top-down and bottom-up processes because both occur simul-
taneously (Turkington 2009; Strong & Frank 2010; Terborgh &
Estes 2010; Thompson et al. 2012). In addition, applying con-
cepts such as ecological networks, trophic cascades, food web
stability, and diversity—ecosystem function relationships offers
aricher way to consider the functioning of each system in terms
of top-down (consumer control) and bottom-up (resource con-
trol) forces, and ecological networks (Loreau & de Mazancourt
2013; Sauve et al. 2014). Few of these concepts are ever uti-
lized in restoration practice, even though they are sometimes
addressed in the restoration literature (Palmer et al. 1997; Van-
der Zanden et al. 2006). The challenge in applying them lies
in differentiating the ecological conditions in which bottom-up
and top-down control predominate, trophic cascades occur, and
ecological networks confer stability.

Productivity can influence trophic structure and ecological
networks. An interesting intersection between terrestrial and
aquatic systems is leaf litter inputs into streams. Leaf litter is
a major carbon pathway and is important in stream systems
(Webster & Meyer 1997). Wallace et al. (1997) experimentally

excluded leaf litter from a headwater stream for 3 years, and
found declines in most invertebrate taxa, which are a food source
for multiple predators in stream and on land (Power & Dietrich
2002). Stream restoration must therefore consider inputs of
terrestrial/riparian detritus for successful food web recovery.

Trophic cascades can affect productivity. The trophic cascade
hypothesis proposes that feeding by piscivores and planktivores
affects rates of primary production in lakes such that there is
a top-down influence of predators on prey through multiple
trophic levels (Carpenter et al. 1985). A good example in a
terrestrial system is the effect that certain hunting spider species
exert on plant productivity in old fields (Schmitz 2003). Schmitz
compared productivity and community composition in systems
with just plants, plants with insect herbivores, and plants with
insect herbivores and spiders. Plant productivity increased as
a function of both herbivore and predator removal, because
predators drove herbivores to predation refuges dominated by
highly productive plant species. By feeding on these plants,
herbivores suppress productivity but also promote plant species
evenness, because subordinate plant species were released from
competition. Another example of predator—prey interactions
influencing productivity involves the predatory interaction of a
beetle (Agonum impressum) on earthworms. Theory suggests
that predators consuming earthworms will negatively impact
primary production by limiting aeration and essential nutrient
mineralization in soils. By contrast, Zhao et al. (2013) found
that beetles drive earthworms to deeper soil strata while having
a relatively small impact on earthworm population density.
This non-consumptive predator effect led to improvements in
soil structure and development and consequently augmented
primary production.

As biodiversity increases and food webs develop, ecosystem
complexity increases and, generally, so does ecosystem stability
(Lake et al. 2007; Rey Benayas et al. 2009; Filotas et al. 2010).
Plant community diversity is often correlated with diversity of
higher trophic levels (Haddad et al. 2009) which in turn is pur-
ported to impart resilience to adversity (e.g. drought) (Frank &
McNaughton 1991; Bloor & Bardgett 2012) and to facilitate
ecosystem processes (Naeem et al. 1994). This evidence sup-
ports a strong argument to aim for high plant diversity in restora-
tion projects. By contrast, few studies have addressed higher
trophic level diversity or its effects on resources. Otto et al.
(2008) evaluated the effects of predator diversity on herbivore
survival and primary producer biomass in a tri-trophic system.
They tested whether consumer additivity, identity, or compensa-
tion predicted cascading outcomes at lower trophic levels. They
discovered that predator identity and phenology played signif-
icant roles in determining the strength of trophic interactions.
This example reveals the need to determine not only the pro-
cesses governing intratrophic organization, but also how similar
or contrasting processes interact at multiple trophic levels. Test-
ing analogous concepts at multiple trophic levels provides an
opportunity to determine the generality of various resource and
community theories within a single interacting system, and to
better understand their dynamics.

Many animal species naturally recolonize restored habitats
(e.g. Cristescu et al. 2013) and restoration ecology increasingly
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promotes species introductions and leaving space and habi-
tats for natural colonization (Choi 2004; Hendrychova et al.
2012; Grégoire Taillefer & Wheeler 2013). Several bird species
showed marked increases in abundance after vegetation had
been re-established in a riparian corridor in Towa (Benson et al.
2006). Some riparian restoration efforts may be aimed at con-
serving particular animal species of concern, which depend
upon provision of specific host plants (Rood et al. 2003).

Small mammals on the forest floor show variable responses
to clearcutting with generalist species persisting and specialist
species disappearing. The abundances of mammalian carnivores
are also reduced by clearcutting because of the loss of preferred
prey species, den sites, and other components of forest stand
structure (Fisher & Wilkinson 2005). Motivated by this observa-
tion, Sullivan et al. (2012) posed the question: if we build habitat
with woody debris structures on clearcuts, will forest mammals
come? Coarse woody debris provides many important func-
tions that are essential to maintaining biodiversity and long-term
ecosystem productivity. In commercial forests, woody debris
is the residue (slash) left after conventional and salvage har-
vesting. Woody debris structured as piles and windrows were
compared with the typical dispersed distribution of debris for
use by a specialist small mammal, the southern red-backed
vole (Myodes gapperi) and two mammalian carnivores: the
short-tailed weasel (Mustela erminea) and the American marten
(Martes americana). Three years of sampling indicated that
mean abundance of red-backed voles differed among the treat-
ments with the highest counts in windrows and the lowest
in the dispersed treatment. Total abundance and species rich-
ness of small mammals was highest in piles and windrows.
As a complement to restoration practices, adding non-living
structures as nesting and refugia in land reclamation follow-
ing mine closure could be a useful tool for the reintroduction
of animals.

Restoration can involve the removal of non-native species.
Non-native predators in temperate lakes have caused large
declines in native fish communities and alterations of trophic
structure (Vander Zanden & Rasmussen 1999). When a
non-native apex predator (smallmouth bass) was removed from
a temperate lake, a stable isotope analysis revealed that the
native apex predator (lake trout) increased their trophic position
within 2 years (Lepak et al. 2006).

These examples underline the need for a synthetic,
multi-trophic approach to restoration, and highlight some
of the basic research necessary to determine when and how
to introduce carnivores and herbivores to a recovering ecosys-
tem. Success with wolves in Yellowstone National Park
(Kauffman et al. 2010; Ripple & Beschta 2012) suggests that
landscape context and scale are key considerations for sus-
tainable recovery, where a species-specific approach may be
favorable, accommodating mobility, territoriality, and resource
requirements of the targeted predator before its reintroduction.
Reconstructing habitat features in addition to healthy vegetation
communities (windrows) may jumpstart the regeneration of
herbivore and predator communities, while autogenic recovery
based solely on re-establishing vegetation may not succeed.

Addressing Roadblocks to Management
Implementation

Considering the importance of trophic cascades, why are food
webs not a major component of restoration project planning?
A strong possibility is the time, effort, and expense needed
to identify and monitor food webs in ecosystems. Practical
solutions for the inclusion of trophic structure in restoration
planning can include the following:

e Increase heterogeneity of habitat types across the landscape,
which will foster trophic structure. Heterogeneity can be
accomplished by plantings of different plant communities
in random patches, and the introduction of coarse woody
debris in piles or windrows to enhance complexity. This
may also require landscape sculpting stream re-configuration
to encourage heterogeneity through variation in slope and
aspect.

e Increase plant diversity and diversity of plant functional
groups on the assumption that plant diversity is positively
correlated with the diversity of microbes, fungi, insects, birds,
and animals in general, and that biodiversity will increase the
stability of the ecosystem.

e Add nesting features such as bird boxes and bee hives to
encourage connectivity through pollination and seed disper-
sal, thus enhancing trophic structure.

e Increase complexity in vegetation structure by planning
communities that include combinations of short herbaceous
plants, medium-statured shrubs, and tall-statured trees.

e Provide targets for soil development and fungal networks to
increase the efficiency of nutrient cycling and environmental
stress avoidance, such as drought.

e Add plant litter in terrestrial and aquatic restoration projects,
perhaps through the strategic introduction of foundation
species, to facilitate decomposition processes and nutrient
cycling.

e Manage top-down control by introducing grazing to influence
plant diversity and potentially facilitate plant growth.

e Introduce top predators (invertebrate, avian, and mammalian)
to trigger trophic cascades.

e Remove non-native top predators, particularly in aquatic
systems negatively affected by species invasions.

e Use of genomic tools to characterize the composition and
function of predisturbed natural communities, and to moni-
tor recovery during restoration. Although not necessarily as
practical a tool as the others, the use of genomics in restora-
tion is a growing field, made more possible by decreasing
costs and increased access to better and faster computational
power.

Ecologists and restoration practitioners should consider
opportunities to coordinate distributed experiments across large
geographic scales (Fraser etal. 2013) investigating habitat
fragmentation and the complete reorganization of soil, water,
and biomass at scales beyond those ordinarily accessible for
ecological manipulations or otherwise impractical for single
site field experimentation.
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Human impacts on the environment, such as continuing nat-
ural resource extraction and the disturbance associated with it,
require good restoration research and practice. Although food
web structures in terrestrial ecosystems are undoubtedly com-
plex, it is possible to evaluate the increased predictive power of
whole-ecosystem concepts, over those currently used, making
it possible to address fundamental ecological problems in the
specific context of human land use.
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